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Abstract. We examine augmented Lagrangians for optimization problems with a single (either
inequality or equality) constraint. We establish some links between augmented Lagrangians and
Lagrange-type functions and propose a new kind of Lagrange-type functions for a problem with
a single inequality constraint. Finally, we discuss a supergradient algorithm for calculating optimal
values of dual problems corresponding to some class of augmented Lagrangians.
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1. Introduction

Classical Lagrange and penalty functions can be applied only for examination of
some special classes of constrained optimization problems. Some generalizations
of these functions have recently been studied. Currently there are two main types
of such a generalization. One of them is the augmented Lagrangian, which is based
on an augmentation of the classical Lagrange function by a certain augmenting
function (see [6, 12] and references therein).

The fundamental of the other approach to generalization of Lagrangians is a
nonlinear convolution of the objective and constraint functions (see [7, 9, 10, 12]
and references therein). Such a convolution leads to nonlinear Lagrange-type func-
tions. We establish some links between the two mentioned approaches.

It is well-known that each constrained optimization problem can be reformu-
lated as a problem with a single inequality-constraint. Many complicated con-
structions become much simpler and more understandable for single-constrained
problems. In this paper we examine the augmented Lagrangians with certain aug-
menting functions for problems with a single (either inequality or equality) con-
straint. In particular we study the so-called sharp Lagrangian [6] for such problems.
The simple structure of the sharp augmenting function ��z�=�z� allows us to give
an explicit description of the sharp augmented Lagrangian. By using this result
we propose a new type of nonlinear Lagrangians for problems with an inequality
constraint, for which the dual function can be easily expressed through the dual
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function of the problem with an equality constraint. This approach allows us to
extend some results, obtained for problems with an equality constraint, to problems
with an inequality constraint. We also examine a certain version of the super-
gradient method for solving the dual problem. First we consider problems with
an equality constraint and generalize a version of this method proposed in [1] for
sharp augmented Lagrangian, to a more general class of augmented Lagrangians.
Then we show that a new type of nonlinear Lagrangians allows to use this method
in solving the problems with an inequality constraint.

2. Preliminaries

2.1. CONSTRAINED OPTIMIZATION PROBLEM AND ITS REFORMULATION

Consider a metric space X and functions f �X→� and g �X→�m where �m is
m-dimensional Euclidean space equipped with the coordinate-wise order relation.
Consider the following constrained optimization problem P�f �g�:

minimize f �x� subject to x∈X�g�x��0� (2.1)

where g�x�=�g1�x��


�gm�x��. Let

X0=�x∈X �g�x��0� (2.2)

be the set of feasible solutions for P�f �g� and let

M= inf�f �x� �x∈X0� (2.3)

be the optimal value of P�f �g�. It is assumed that M>−�.

For some applications it is convenient to consider certain reformulations of
the problem P�f �g�. In particular, P�f �g� can be reformulated as the following
problem P�f �f1� with the single constraint function f1:

minimize f �x� subject to x∈X�f1�x��0� (2.4)

where f1�x�=maxi=1�


�mgi�x�. Problems P�f �g� and P�f �f1� have the same
set of feasible solutions and the same objective function.

REMARK 2.1. A general mathematical programming problem:

minimizef �x� subject to gi�x��0�i∈ I�� hj�x�=0��j∈J� (2.5)

with finite I and J , also can be reformulated as (2.4) with

f1�x�=max�max
i∈I

gi�x��max
j∈J

�hj�x���

The approach proposed here is suitable for examining even more complicated prob-
lems, which lead to f1�x�=mini∈Imaxj∈J gij�x�, where I and J are finite sets of
indices and gij are certain functions.
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An inequality constraint f1�x��0 is called active if the problem P�f �f1� has
a solution x∗ such that f1�x∗�=0
 In this case it is obvious that x∗ is a solution to
the problem Pe�f �f1� with the equality constraint:

minimize f �x� subject to f1�x�=0
 (2.6)

Assume that the inequality constraint f1�x��0 is obtained by the cutting
of the negative part of a certain constraint function f̃ : f1�x�= f̃+�x�, where
a+=max�a�0�. (Such functions are used for penalization.) Then the constraint
f1�x��0 is active if and only if P�f �f1� has a solution.

2.2. AUGMENTED LAGRANGE FUNCTIONS

To define an augmented Lagrangian for a problem P�f �g� we need to have two
exogenous with respect to P�f �g� functions. First of them is the so-called dualiz-
ing parameterization, that is a function f̄ �X×�m→�̄ such that f̄ �x�0�=f �x�,
where �̄= �−��+��. We need to have also an augmenting function � for the
augmentation of the classical Lagrangian. It is assumed that � ��m→� is a
continuous function with the following properties:

��0�=0� ��z�>0 if z �=0
 (2.1)

Let �⊂�m×�+. The augmented Lagrange function l �X×�→�
corresponding to f̄ and � has the following form [3, 6]:

l�x��y�r��= inf
z∈�m

�f̄ �x�z�−�y�z�+r��z��� �y�r�∈�
 (2.2)

(We denote the inner product of vectors y and z by �y�z�.) We shall consider here
only the canonical dualizing parameterization function f̄ defined on X×�m by

f̄ �x�z�=
{
f �x� g�x�+z�0�
+� otherwise


(2.3)

Then the augmented Lagrangian corresponding to an augmenting function � has
the form:

l�x��y�r��= inf
g�x�+z�0

�f �x�−�y�z�+r��z��� �y�r�∈�
 (2.4)

The dual function q is defined on � by

q�y�r�= inf
x∈X

l�x��y�r��


Under natural assumptions the weak duality property holds, that is, M∗�M ,
where M∗ is the optimal value of the dual problem:

�D� maximize q�y�r� subject to �y�r�∈�
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It is well-known (see, for example [3, 6]) and easy to see that the dual function
q is concave.

The augmented Lagrangian le for the problem Pe�f �g� with the constraint
function g �X→�m can be defined as

le�x��y�r��=f �x�+�y�g�x��+r��g�x��


This augmented Lagrangian corresponds to the dualizing parameterization

f̄ �x�z�=
{
f �x� if g�x�−z=0�
+�� otherwise


The function le generates the dual function qe�y�r�= infx∈X l
e�x��y�r�� and the

dual problem

�De� maximize qe�y�r� subject to �y�r�∈�


2.3. LAGRANGE-TYPE FUNCTIONS BASED ON CONVOLUTION FUNCTIONS

We consider one more type of nonlinear Lagrangians, which is based on convolu-
tion of the objective and constraint functions (see [3, 7, 9, 10, 12] and references
therein). Let � be a set of parameters. Consider a function h��×�m×�→�̄,
where �̄ is the extended real line. The function L�X×�→�̄ defined by

L�x�#�=h�f �x��g�x��#�

is called the Lagrange-type function corresponding to the function h. The function
h in this scheme, is called a convolution function. The dual function q is defined
by q�#�= infx∈XL�x�#�. The problem

�D� maximize q�#� subject to #∈�


is called dual. Here we consider mainly convolution functions h of the form

h�u�v�#�=u+&�v�#�� u∈��v∈�m�#∈�
 (2.1)

The Lagrange-type function of the problem P�f �g� corresponding to h has the
form

L�x�#�=f �x�+&�g�x��#�� x∈X�#∈�
 (2.2)

Nonlinear Lagrange-type functions, which are based on more general convolution
functions, have been studied in [7, 10, 12].

3. Links Between the Two Types of Generalized Lagrange Functions

Consider the problem P�f �g� with f �X→� and g �X→�m. Let l�x��y�r��
be the augmented Lagrangian of P�f �g� corresponding to the canonical dualizing
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parameterization f̄ defined by (2.3) and to an augmenting function � . We have
(see (2.4)):

l�x��y�r��= inf
g�x�+z�0

�f �x�−�y�z�+r��z��
 (3.1)

Let �⊂��y�r� �y∈�m�r�0�. Assume that �0�0�∈� and �y�r�∈� implies
�y�r ′�∈� for all r ′�0. We consider � as the set of parameters. Consider the
convolution function h��×�m×�→� defined by

h�u�v��y�r��= inf
z+v�0

�u−�y�z�+r��z��=u+ inf
z+v�0

�−�y�z�+r��z��


(3.2)

It is easy to see that the Lagrange-type function L�x��y�r��=h�f �x��g�x���y�r��
corresponding to (3.2) coincides with the augmented Lagrangian l�x�y�r�. Let

&�v��y�r��= inf
z+v�0

�−�y�z�+r��z��
 (3.3)

Then h�u�v��y�r��= u+&�v��y�r��
 We now give some properties of the
function & .

PROPOSITION 3.1. Let & be the function defined by (3.3). Then

(1) &�v��0�0��=0 for all v∈�m.
(2) The function v �→&�v��y�r�� is increasing for each �y�r�∈�.
(3) &�0��y�r���0 for all �y�r�∈�.
(4) &�v��y�r���0 for v�0 and �y�r�∈�

(5) max�y�r�∈�&�v��y�r��=0 for all v�0.

Proof. (1) This is clear.

(2) Since v1�v2 implies �z �z+v2�0�⊂�z �z+v1�0� it follows that the
function v �→&�v��y�r�� is increasing for each �y�r�.

(3) &�0��y�r��= infz�0�−�y�z�+r��z���−�y�0�+r��0�=0.
(4) This follows from (2) and (3).
(5) Combining (4) and (1) we have:

sup
�y�r�∈�

&�v��y�r���0=&�v��0�0���

for v�0. Hence max�y�r�∈�&�v��y�r��=0 for all for v�0


REMARK 3.1. If the augmenting function � is positively homogeneous then the
function v �→&�v��y�r�� is also positively homogeneous with respect to v for
any fixed �y�r�.
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PROPOSITION 3.2. Let �y�r�∈� and v̄∈�m. Assume that there exist numbers
R=R�v̄� and (=(�v̄�>0 such that

inf
z�−v

�−�y�z�+r��z��= min
z�−v��z��R

�−�y�z�+r��z�� (3.4)

for all v∈�m with �v− v̄�<(. Then the function &�y�r��v� �=&�v��y�r�� is
continuous at v̄.

Proof. We have

&�y�r��v�= min
z�−v��z��R

�−�y�z�+r��z��

for all v such that �v− v̄��(. Denote −�y�z�+r��z�=*�z�. The function * is
continuous. Let vk→ v̄ and let z̄∈argmin�*�z� �z�−v̄��z��R�
 Consider
the vector zk with components zki =min�−vki �z̄i�� i=1�


m. Then zk�−vk, so

*�zk�� inf
z�−vk

*�z�=&�y�r��v
k�


Since vk→ v̄ it follows that zk→ z̄, so &�y�r��v̄�=*�z̄�� limsupk→+�&�y�r��v
k�


Consider now a vector z̄k∈argmin�*�z� �z�−vk��z��R�. Without loss of
generality assume that there exists lim z̄k �= z̄. Then z̄�−v̄ and �z̄��R, so
&�y�r��v̄��*�z̄�= lim*�z̄k�= lim&�y�r��v

k�.

REMARK 3.2. The condition (3.4) holds for �y�r�∈� and all v̄∈�m if

lim
�z�→+�

�−�y�z�+r��z��=+�
 (3.5)

4. Sharp Augmented Lagrangian for Problems with a Single Constraint

Let X be a metric space. We shall consider a problem P�f �f1� with a single
constraint:

minimize f �x� subject to x∈X� f1�x��0�

where f and f1 are finite functions defined on X. Recall that the optimal value
of P�f �f1� has been denoted by M : M= inff1�x��0f �x� and the set of feasible
solutions has been denoted by X0: X0=�x∈X �f1�x��0�. We will also use the
following notation:

X1=�x∈X �f1�x�>0�=�x∈X �x�X0�
 (4.1)

In this section we shall study a sharp Lagrangian with ��z�=�z� in the case m=1

Thus

l�x��y�r��= inf
z+f1�x��0

�f �x�−yz+r �z��
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Let & be a function defined by (3.3). Then

l�x��y�r��=f �x�+&�f1�x���y�r��
 (4.2)

Note that

&�v��y�r��= inf
z�−v

�−yz+r �z��


Let us calculate the quantity &�v��y�r�� for all �y�r�∈�2 and v∈�, explicitly.

PROPOSITION 4.1. Let�=��y�r� �y+r�0�. If �y�r�∈� then

&�v��y�r��=


v�y+r� if v>0�
v�y−r� if v�0�r <y

0 if v�0�r�y
(4.3)

If �y�r��� then &�v��y�r��=−�.
Proof. We consider separately the following two cases:

(1) v>0. In this case z�−v implies z�0, and therefore for all �y�r�∈�2 we
have:

&�v��y�r��= inf
z�−v

�−z��y+r�=
{ −� if y+r<0�
v�y+r� if y+r�0


(4.4)

(2) v�0. Then for all �y�r� we have:

&�v��y�r��=min� inf
0�z�−v

z�r−y��inf
z<0

�−z��r+y��


Since

inf
0�z�−v

z�r−y�=
{
v�y−r� if r <y�

0 if r�y

and

inf
z<0

�−z��r+y�=
{−� if y+r<0�

0 y+r�0

we conclude that

&�v��y�r��=



−� if y+r <0�
v�y−r� if y+r�0� r <y�

0 if y+r�0� r�y�
(4.5)

for all v�0. It follows from (4.4) and (4.5) that &�v��y�r��=−� for �y�r���
and all v. Applying again (4.4) and (4.5) we obtain (4.3).
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COROLLARY 4.1. A sharp Lagrangian l �X×�→�̄ has the following form:

l�x��y�r��=f �x�+


f1�x��y+r� if x∈X1�
f1�x��y−r� if x∈X0� r <y�

0 x∈X0� r�y


Proof. It follows directly from (4.2) and (4.3).

Let us compare the sharp Lagrangian l�x��y�r�� with the classical penalty func-
tion L+�x�,� defined on X×�+. By definition L+ is the Lagrange-type function
corresponding to convolution function h+ ��×�+×�+, where

h+�u�v�,�=u+,v+=u+&+�v�,� (4.6)

with

&+�v�,�=,v+
 (4.7)

We have

L+�x�,�=f �x�+
{
,f1�x� if x∈X1�

0 if x∈X0

(4.8)

Let �y�r�∈�. If r�y then l�x��y�r��=L+�x�y+r� for all x∈X. If r <y
then l�x��y�r��=L+�x�y+r� for x∈X1 and l�x��y�r���L+�x�y+r� for
x∈X0. Thus

l�x��y�r���L+�x�y+r�� x∈X� �y�r�∈�
 (4.9)

Let

�1=��y�r�∈��r�y�
 (4.10)

It follows from the above considerations that the following assertion holds.

PROPOSITION 4.2. l�x��y�r��=L+�x�y+r� for all x∈X and �y�r�∈�1.

5. Dual Functions for Sharp Lagrangians

In this section we calculate the dual function q corresponding to the sharp Lag-
rangian l of the problem P�f �f1�. Recall that, by definition

q�y�r�= inf
x∈X

l�x��y�r��� �y�r�∈��=��y�r� �y+r�0�


Let

qe�y�r�= inf
x∈X

�f �x�+yf1�x�+r �f1�x���� �y�r�∈�
 (5.1)

be the dual function for the problem Pe�f �f1� with the equality constraint function
f1.
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PROPOSITION 5.1. We have

q�y�r�=min�M�qe�y�r�� for�y�r�∈�


Proof. Applying Corollary 4.1 we conclude that:

inf
x∈X1

l�x��y�r��= inf
x∈X1

�f �x�+�y+r�f1�x��� (5.2)

inf
x∈X0

l�x��y�r��=
{

infx∈X0
�f �x�+�y−r�f1�x�� if r <y

infx∈X0
f �x� �=M if r�y


(5.3)

By definition,

q�y�r�= inf
x∈X

l�x��y�r��=min� inf
x∈X0

l�x��y�r��� inf
x∈X1

l�x��y�r���


Combining (5.2) and (5.3) we conclude that

q�y�r�=
{

min�infx∈X0
�f �x�+�y−r�f1�x���infx∈X1

�f �x�+�y+r�f1�x�� if r <y�

min�M�infx∈X1
�f �x�+�y+r�f1�x�� if r�y


(5.4)

Note that

qe�y�r� = min� inf
x∈X0

�f �x�+yf1�x�+r �f1�x����
inf
x∈X1

�f �x�+yf1�x�+r �f1�x����
 (5.5)

Since f1�x��0 for x∈X0 and f1�x�>0 for x∈X1 we deduce that

min� inf
x∈X0

�f �x�+�y−r�f1�x��� inf
x∈X1

�f �x�+�y+r�f1�x��=

min� inf
x∈X0

�f �x�+yf1�x�+r �f1�x����

inf
x∈X1

�f �x�+yf1�x�+r �f1�x����=qe�y�r�
 (5.6)

Let y>r and x∈X0. Then �y−r�f1�x��0 so infx∈X0
�f �x�−�r−y�f1�x���

M . It follows from (5.6) that qe�y�r�� m� so min�M�qe�y�r��=qe�y�r�.
Combining this equality with (5.4) and (5.6) we have

q�y�r�=qe�y�r�=min�M�qe�y�r��� y>r


Assume now that y�r . First we prove that

min�M� inf
x∈X1

�f �x�+�y+r�f1�x���=min�M�qe�y�r��
 (5.7)
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Indeed,

qe�y�r�� inf
x∈X1

�f �x�+yf1�x�+r �f1�x���
 (5.8)

If the equality holds in (5.8) then (5.7) trivially holds. Otherwise we have, due to
(5.5)

qe�y�r�= inf
x∈X0

�f �x�+yf1�x�+r �f1�x��� < inf
x∈X1

�f �x�+yf1�x�+r �f1�x���

(5.9)

Since y�r� it follows that:

f �x�+yf1�x�+r �f1�x��=f �x�+�y−r�f1�x��f �x�� x∈X0


So

M � inf
x∈X0

�f �x�+yf1�x�+r �f1�x���=qe�y�r�<

inf
x∈X1

�f �x�+yf1�x�+r �f1�x���


Thus (5.7) is valid. Combining (5.4) and (5.7) we conclude that

q�y�r�=min�qe�y�r��M�� if y�r


COROLLARY 5.1. Assume that the constraint f1 is active, that is, the problem
P�f �f1� has a solution x∗ such that f1�x∗�=0. (Then x∗ is also a solution of
Pe�f �f1�.) Then we have q�y�r�=qe�y�r�� �y�r�∈�.

Proof. Indeed,

M = f �x∗�=f �x∗�+yf1�x∗�+r �f1�x∗���
inf
x∈X

�f �x�+yf1�x�+r �f1�x���=qe�y�r�


Hence, q�y�r�=min�M�qe�y�r��=qe�y�r�.

Consider the dual function q+ corresponding to the penalty function L+. By
definition,

q+�,�= inf
x∈X

�f �x�+,f+
1 �x��� ,>0
 (5.10)

Since l�x��y�r���L+�x�y+r� for all x∈X and �y�r�∈� (see (4.9)), it
follows that q�y�r��q+�y+r� for �y�r�∈�.

Consider now the set of parameters �1 defined by (4.10): �1=��y�r�∈��
r�y�. Since l�x��y�r��=L+�x�y+r� for all x∈X and �y�r�∈�1 (see
Proposition 4.2), it follows that

q�y�r�=q+�y+r�� �y�r�∈�1
 (5.11)
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6. An Approach to Constructing Nonlinear Lagrangians

Proposition 5.1 establishes links between dual functions for the sharp Lagrangians
for the problems P�f �f1� and Pe�f �f1� respectively. Namely,

q�y�r�=min�qe�y�r��M�� �y�r�∈�=��y′�r ′� �y′+r ′�0�
 (6.1)

Note that the weak duality property does not necessarily hold for the function qe, if
we consider this function as dual with respect to the inequality constrained problem
P�f �f1�. The simplest way to obtain this property is to use the construction from
(6.1). In this section we shall examine an abstract version of this construction and
then apply it to some augmented Lagrangians.

Let X be a metric space. Consider a problem P�f �g� with f �X→� and
g �X→�m. Let � be a set of parameters, and let h- ��×�m×�→� be
an arbitrary convolution function. Then the corresponding Lagrange-type function
L- �X×�→� is defined as

L-�x�#�=h-�f �x��g�x��#�� x∈X�#∈�


Let q- be the corresponding dual function:

q-�#�= inf
x∈X

L-�x�#�


Let M be the optimal value of the problem P�f �g�. Consider the following func-
tion:

q�#�=min�q-�#��M�� #∈�
and corresponding dual problem:

�D�� maximize q�#� subject to #∈�


If the weak duality property holds for the function q-, that is if q-�#��M for
all #∈�, then q=q-.

We now describe some properties of the function q and problem D.

LEMMA 6.1. (1) Suppose that # is not a solution of the dual problem. Then
q�#�=q-�#�.
(2) Let #∗ ∈� be an element such that there exists a vector x∗ ∈X0 with the
property f �x∗�=minx∈XL-�x�#∗�. Then #∗ is a solution of the dual problem
�D�.

Proof. (1) Since # is not a solution of the dual problem, it follows that

q�#�=min�M�q-�#��<M


Hence q�#�=q-�#�.
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(2) We have f �x∗�=minx∈XL-�x�#∗�=q-�#∗�. Since x∗ ∈X0 it follows that
f �x∗��M . Thus q�#∗�=min�q-�#∗��M�=M=max#∈�q�#�.

Let � be an arbitrary augmenting function and �=��y�r�∈�2 �y+r�0�.
Consider a problem Pe�f �f1� and the augmented Lagrangian le of this problem:

le�x��y�r��=f �x�+yf1�x�+r��f1�x��� x∈X�#∈�


Consider now the problem P�f �f1� and the following nonlinear Lagrangian L of
this problem:

L�x��y�r��=
{
le�x��y�r�� x∈X1

f �x� x∈X0
� #=�y�r�∈�
 (6.2)

Note that L= le+, where le+ is the augmented Lagrangian of the problem Pe�f �f+
1 �

or P�f �f+
1 �. Later on we shall use the augmenting functions � for a problem

P�f �f1� with the following property

��z�� �z� for z∈�f1�x� �x∈X� (6.3)

The inequality (6.3) holds for all P�f �f1� with the sharp augmenting function
��z�=�z�. Notice that we use the constraint function f1 only for describing the set
of feasible solutions. Therefore, by replacing f1�x� with the function f̃1�x� defined
by

f̃1�x�=



−1 if f1�x��−1�
f1�x� if −1�f1�x��1�

1 if f1�x��1�

we can always assume that the values of the constraint function are contained
between −1 and +1.

Let �f1�x���1 for all x∈X and let 0<k�1. Consider the function �k�z�=
�z�k. Then �k�z�� �z� for all z∈ �−1�1�, so (6.3) also holds.

To confirm that the augmenting function ��z�=�z�k with 0<k�1 is of
a certain interest we shall examine saddle points of corresponding nonlinear Lag-
rangians. First consider an arbitrary augmenting function � and the Lagrangian
L defined by (6.2) on X×�. Recall that a point �x∗��y

∗�r∗��∈X0×� is called a
saddle point of L if

L�x∗��y�r���L�x∗��y
∗�r∗���L�x��y∗�r∗��� x∈X��y�r�∈�
 (6.4)

Since x∗ ∈X0 it follows that L�x∗��y�r��=f �x� for all �y�r�∈�, so (6.4) is
equivalent to

f �x∗��
{
f �x�+y∗f1�x�+r∗��f1�x�� if x∈X1�

f �x� if x∈X0

(6.5)
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Let x∗ be a solution of P�f �f1�. It follows from (6.5) that �x∗��y
∗�r∗�� is a saddle

point if and only if

f �x∗�−f �x��y∗f1�x�+r∗��f1�x��� x∈X1


Without loss of generality assume that �f1�x���1 for all x∈X and that �k�z�=�z�k� �k>0�. Then a saddle point for some k remains a saddle point for all 0<
k′<k. It is easy to give examples, which demonstrate that a saddle point does not
exist for a certain k and exists for some k′<k. Thus it is beneficial to consider
small k>0, in particular k�1. Condition (6.3) is valid for such k. If P�f �f1�
is a convex problem then the use of function �k can destroy the nice structure of
this problem. However, for nonconvex problems of global optimization the use of
such functions is inevitable. This observation shows that sometimes the augmented
Lagrangians with a concave augmenting function are more beneficial than those
with a convex augmenting function, which as rule have been studied in literature
(see, for example [6]).

Consider a pair of functions f �f1 defined onX, problems P�f �f1� and Pe�f �f1�,
augmented Lagrangian le for the problem Pe�f �f1� and nonlinear Lagrangian L
defined by (6.2). Let qe be the dual function, corresponding to le and q be the dual
function corresponding to L.

PROPOSITION 6.1. Let� be an augmenting function such that (6.3) is valid. Then

q�y�r�=min� m�qe�y�r��

for all �y�r�∈�1=��y�r�∈��r�y�.
Proof. We need to prove that

q�y�r� �=min�M� inf
x∈X1

�f �x�+yf1�x�+r��f1�x���=min�M�qe�y�r��


(6.6)
We have

qe�y�r� = min� inf
x∈X0

�f �x�+yf1�x�+r��f1�x���

inf
x∈X1

�f �x�+yf1�x�+r��f1�x���


If qe�y�r�= infx∈X1
�f �x�+yf1�x�+r��f1�x��� then (6.6) is valid. Otherwise

qe�y�r� = inf
x∈X0

�f �x�+yf1�x�+r��f1�x����

inf
x∈X1

�f �x�+yf1�x�+r��f1�x���
 (6.7)

It follows from (6.3) that

qe�y�r� = inf
x∈X0

�f �x�+yf1�x�+r��f1�x���

inf
x∈X0

�f �x�+yf1�x�−rf1�x�� inf
x∈X0

f �x�=M
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Hence min�qe�y�r��M�=M . Applying the inequality from (6.7) we also have

q�y�r�=min�M� inf
x∈X1

�f �x�+yf1�x�+r��f1�x���=M


7. Duality

Consider the problem P�f �f1�. Let

.�x�#�=f �x�+&�f1�x��#�� x∈X�#∈�
be a certain Lagrange-type function for this problem. The dual problem to P�f �f1�
corresponding to . has the form

�D� maxq�#� subject to#∈��

where q is the dual function: q�#�= infx∈X .�x�#�.
The equality sup#∈�q�#�= infx∈X0

f �x� is called the zero duality gap prop-
erty. If the zero duality gap property holds then solving P�f �f1� can be reduced
to solving a series of unconstrained problems. The zero duality gap property
holds under very mild conditions (see, for example [11] and references therein).
In particular, assume that �=��y�r� �y∈��r ∈�+�y+r�0� and &�v��y�r��
is defined by (3.3): &�v��y�r�= infz+v�0�−yz+r��z�, where ��0�=0 and
��z�>0 for z �=0. The latter holds if � is defined by (6.3). In this case the lower
semicontinuity of the perturbation function /�y�= inff1�x�+y�0f �x� at the origin
implies the zero duality gap property.

An element #̄∈� is called an exact parameter for the problem P�f �f1� if

M= inf
x∈X

.�x�#̄�


Wedonot require that the solution set forP�f �f1� coincideswith argminx∈X.�x�#̄�.
Assume that the weak duality holds, that is M� infx∈X .�x�#� for all #∈�. Then
#̄ is an exact parameter if and only if

M�.�x�#̄�=f �x�+&�f1�x��#̄� for all x∈X
 (7.1)

Consider now the classical (linear) penalty function L+�x�,� and the quadratic
penalty function L+

2 �x�,�, where

L+�x�,�=f �x�+,f+
1 �x�� L+

2 �x�,�=f �x�+,�f+
1 �x��

2


In some applications the quadratic penalty function is preferred due to its differ-
entiability properties, however it is easy to determine the cases when an exact
parameter does not exist for quadratic penalty function while it exists for linear
penalty function. Indeed, since f+

1 �x�=0 for x∈X0=�x∈X �f1�x��0�
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and f+
1 �x�>0 for x∈X1=X\X0, it easily follows from (7.1) that the exact

parameter for the linear penalty function exists if and only if

,̄≡ sup
x∈X1

M−f �x�

f1�x�
<+�
 (7.2)

It is also easy to check that the least exact parameter is equal to ,̄. Due to (7.1) we
can conclude that the exact parameter for the quadratic penalty function exists if
and only if

,̄2≡ sup
x∈X1

M−f �x�

�f1�x��
2 <+�

and ,̄2 is the least exact parameter. Assume that f1�x��1. Then ,̄2� ,̄. Thus the
existence of an exact parameter for the quadratic penalty function implies that for
the linear penalty function. The following example demonstrates the case, when
the exact parameter for the linear penalty function exists and it does not exist for
quadratic penalty function.

EXAMPLE 7.1. Let X=�+. Consider the problem

minx2 subject to 1−x�0


The value M of this problem is equal to 1. We have

,̄= sup
1−x>0

1−x2

1−x
=2<+�� ,̄2= sup

1−x>0

1−x2

�1−x�2
=+�


Consider now the sharp augmented Lagrangian

l�x��y�r��= inf
z+f1�x��0

�f �x�−yz+r �z���
#=�y�r�∈�1=��y�r�∈��r�y�


Due to Proposition 4.2 we have l�x��y�r��=L+�x�y+r�. Thus the exact para-
meter �y�r� exists if and only if the quantity ,̄ defined by (7.2) is finite. Note
that the inequality ,̄<+� is a sufficient condition for the existence of an exact
parameter, if the augmented Lagrangian with the augmenting function� , satisfying
(6.3), is used for constructing the dual problem.

8. Supergradient Method for Solving the Dual Problems

In this section we first consider a version of a supergradient method for solving
the dual of the problem Pe�f �f1� with the equality constraint function f1. Then by
using the approach given in Section 6 we extend the obtained results to problems
with an inequality constraint.
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Let � ��→�+ be an augmenting function, such that (6.3) holds. Then

��0�=0� ��z�� �z�
 (8.1)

Consider a problem Pe�f �f1�. Corresponding to � the augmented Lagrangian le

and the dual function qe have the following form, respectively:

le�x��y�r��=f �x�+yf1�x�+r��f1�x��� x∈X��y�r�∈�� (8.2)

qe�y�r�= inf
x∈X

�f �x�+yf1�x�+r��f1�x��� �y�r�∈�
 (8.3)

Let

Q�y�r�=argminx∈X�f0�x�+yf1�x�+r��f1�x����for �y�r�∈�
 (8.4)

The dual function qe is concave, so the dual problem is a convex program. The
following simple result characterizes the solutions of primal and dual problems
and allows one to calculate a supergradient of the dual function explicitly.

THEOREM 8.1. Let �ȳ�r̄�∈� be a point with nonempty Q�ȳ�r̄� and let x̄∈
Q�ȳ�r̄�. Then the pair �f1�x̄����f1�x̄��� is a supergradient of the dual function q

e

at �ȳ�r̄�. If r̄+ ȳ>0 and f1�x̄�=0 then x̄ is a solution of Pe�f �f1� and �ȳ�r̄� is
a solution of the dual problem.

Proof. For all �y�r�∈� we have

qe�y�r� = min
x∈X

�f �x�+yf1�x�+r��f1�x���f �x̄�+yf1�x̄�+r��f1�x̄��

= f �x̄�+ ȳf1�x̄�+ r̄��f1�x̄��+�y−y1�f1�x̄�+�r− r̄ ���f1�x̄��

= qe�ȳ�r̄�+�y− ȳ�f1�x̄�+�r− r̄ ����f1�x̄��


Thus �f1�x̄����f1�x̄��∈1qe�ȳ�r̄�. If f1�x̄�=0 then 0∈1qe�ȳ�r̄�. The inequal-
ity ȳ+ r̄ >0 implies �ȳ�r̄�∈ int� so �ȳ�r̄� is a solution of dual problem. Since
qe�y�r��f �x� for all x with f1�x�=0 and f �x��M for all such x, the
equality f �x̄�=qe�ȳ�r̄� implies f �x̄�=M . �

Now by using this theorem, we present the modified supergradient algorithm for
calculating the optimal value of the dual problem �De�:

max qe�y�r� subject to �y�r�∈�


We assume that the zero duality gap property holds (see Section 7), hence the
optimal value of dual problem coincides with the optimal value of the primal one.

At each iteration we check the optimality condition presented in Theorem 7.1; in
the case when the point xk calculated at kth iteration is not optimal, we define the
newvaluesofdualvariablesbymovinginthesupergradientdirection. InTheorem7.2
below we shall show that the moving in the supergradient direction strongly
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improves the value of dual function at each iteration. Note that the classical su-
pergradient method constructed by using the ordinary Lagrangian does not possess
such a property. Theoretically, it is possible to choose the supergradient which
improves the value of dual function, among all supergradients, at each iteration. In
the case, when the dual function is nonsmooth, it is difficult to calculate the whole
subdifferential at the given point.

ALGORITHM 8.1. Initialization Step. Let y0�0, r0�0, k=0, and go to the
main step.

Main Step
(1) Given �yk�rk�∈�, solve the following subproblem:

minimize �f �x�+ykf1�x�+rk��f1�x��� subject to x∈X


Let xk be any solution. If f1�xk�=0, then stop; by Theorem 8.1, �yk�rk� is a
solution to the dual problem and xk is a solution to Pe�f �f1�. Otherwise, go to
step 2.
(2) Let

yk+1=yk+skf1�xk�� rk+1=rk+�sk+(k���f1�xk��� (8.5)

where sk>0 and (k>0 are step-size parameters, replace k by k+1, and repeat
step 1.

REMARK 8.1. Since ��f1�xk��� �f1�xk��, at each iteration we have

yk+1+ rk+1= yk+skf1�xk�+rk+�sk+(k���f1�xk��

= yk+rk+sk���f1�xk��+f1�xk��+(k��f1�xk��

� yk+rk+sk��f1�xk��+f1�xk��+(k �f1�xk��
� yk+rk� (8.6)

which implies that the new pair of dual variables �yk+1�rk+1� calculated by the
algorithm at �k+1�th iterate, also belongs to �.

The following theorem shows that in contrast with the supergradient methods
developed for dual problems formulated by using ordinary Lagrangians, the new
iterate strictly improves the value of the objective function qe for all sk>0 and
(k>0.

THEOREM 8.2. Consider the problem Pe�f �f1� with �f1�x���1. Let � ��+→
�+ be a function with properties (7.1). Assume the set Q�y�r� is nonempty for
each �y�r�∈�. Consider a point �yk�rk�∈� that is not a solution of the dual
problem and let xk∈Q�yk�rk�. Then for a point �yk+1�rk+1� calculated from (7.5)
for any positive step-size parameters sk and (k we have:

0<qe�yk+1�rk+1�−qe�yk�rk��sk �f1�xk��
2+�sk+(k��� �f1�xk���

2 

(8.7)
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Proof. Let �yk�rk�∈�. Consider le�x��yk�rk��=f �x�+ykf1�x�+rk��f1�x��.
Applying (7.1) we conclude that

qe�yk+1�rk+1� = min
x∈X

�le�x��yk�rk��+�sk+(k���f1�xk����f1�x��+ (8.8)

skf1�xk�f1�x��

� min
x∈X

�le�x��yk�rk��+�sk+(k���f1�xk����f1�x��− (8.9)

sk �f1�xk���f1�x���
� min

x∈X
�f �x�+ykf1�x�+�rk+(k��f1�xk�����f1�x��

= qe�yk�rk+(k��f1�xk��
 (8.10)

Let x̃∈Q�yk�rk+(k��f1�xk��. If f1�x̃�=0, then by Theorem 8.1, the pair
�yk�rk+(k��f1�xk�� would be a solution to the dual problem. It follows from the
inequality qe�yk+1�rk+1��qe�yk�rk+(k��f1�xk��� that �yk+1�rk+1� is also a solu-
tion. Since �yk�rk� is not a solution, we conclude that qe�yk�rk�<q

e�yk+1�rk+1�

When f1�x̃� �=0, we have ��f1�x̃��>0. Since �yk�rk� is not a solution of dual

problem, we can apply Theorem 8.1, by which f1�xk� �=0. Hence ��f1�xk��>0.
We have

qe�yk+1�rk+1� � f �x̃�+ykf1�x̃�+�rk+(k��f1�xk����f1�x̃��

> f�x̃�+ykf1�x̃�+rk��f1�x̃���qe�yk�rk�


Thus the left-hand side of (8.7) has been proved. We now prove the right-hand
side. Let xk∈Q�yk�rk�. Since the pair �f1�xk����f1�xk�� is a supergradient of a
concave function q at �yk�rk�, we have

qe�yk+1�rk+1�−qe�yk�rk�

��yk+1−yk�f1�xk�+�rk+1−rk���f1�xk��

=sk �f1�xk��
2+�sk+(k��� �f1�xk���

2 


The theorem is proved.

REMARK 8.2. For discussion of condition (8.1) see Section 6.

REMARK 8.3. The algorithm presented above is a generalization of the modified
supergradient method suggested by Gasimov [1] for solving the dual problems con-
structed via sharp augmented Lagrangian for problems with equality constraints.
The convergence of this method has been proved in [1] under a certain choice of
parameters sk and (k. The following two theorems demonstrate that the similar
assertions are true also for the supergradient algorithm presented in this paper.
Because of the similarity of proofs of these theorems to those from [1], we present
the following two theorems without proofs.
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THEOREM 8.3. Assume that � �z�� �z�, for all z∈R. Let �yk�rk� be any itera-
tion generated by the algorithm and let xk∈Q�yk�rk�. Suppose that �yk�rk� is not
a solution to the dual problem, so f1�xk� �=0. Then for any dual solution �y�r�,
we have

��y�r�−�yk+1�rk+1��<��y�r�−�yk�rk��
for all step-sizes sk such that

0<sk<
2�qe �y�r�−qe�yk�rk��

�f1�xk��
2+4�� �f1�xk���

2 � (8.11)

and 0<(k<sk.

THEOREM 8.4. Assume that the constraint function f1 satisfies the boundedness
condition �f1�x���1 and the augmenting function � is continuous. Let �yk�rk�
be any iteration of the supergradient method. Suppose that each new iteration
�yk+1�rk+1� calculated from (8.5) for the step-size

sk=
q−qk
ck

and 0<(k<sk�

where q=qe�y�r� denotes the optimal dual value, qk=qe�yk�rk� and ck=
f 2

1 �xk�+4� 2�f1�xk��. Then qk→q.

The method under consideration can also be applied to problems P�f �f1� with
an inequality constraint. We can use the technique described in Section 6.

Consider the problem P�f �f1�. Let � be an augmenting function such that
(6.3) holds and let le be the augmented Lagrangian for the problem Pe�f �f1�
corresponding to � :

le�x��y�r��=f �x�+yf1�x�+r��f1�x��� x∈X� �y�r�∈�


Let qe be the corresponding dual function. We assume that qe is defined only on
the set �1=��y�r� �y+r�0�r�y�. Let L be the nonlinear Lagrangian defined
by (6.2) and let q be the corresponding dual function. Due to Proposition 6.1 we
have

q�y�r�=min�M�qe�y�r��� �y�r�∈�1


The function qe is concave and upper semicontinuous as the infimum of a set of
affine functions �y�r� �→f �x�+yf1�x�+r��f1�x��. We need the following result.

PROPOSITION 8.1. Assume that the pair �y�r�∈�1=��y�r� �−r�y�r�
r�0� is not a solution of the dual problem and that the set Q�ȳ�r̄�� defined
by (8.4), is not empty. Let x̄∈Q�ȳ�r̄�. Then the pair �f1�x̄�����f1�x̄��� is a
supergradient of the dual function q at �ȳ�r̄�
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Proof. By Proposition 6.1 we have:

q�y�r��qe�y�r�� for all �y�r�∈�1


By Theorem 7.1,

qe�y�r��qe�y�r�+�y−y�f1�x�+�r−r�� �f1�x��


Since �y�r� is not a solution, again, by Proposition 6.1 we have q�y�r�=qe�y�r�.

REMARK 8.4. For problems with the active constraint the above inequalities can
be written for all �y�r�∈�.

REMARK 8.5. In the case that the set Q�y�r� is not empty for all �y�r�∈�1,
we can apply the algorithm described above for maximization of the function q. If
�y0�r0�∈�1� then �yk�rk�∈�1 for all k. Assume that �yk�rk� is not a solu-
tion of the dual problem and �yk+1�rk+1� is generated by the algorithm: yk+1=
yk+skf1�xk��rk+1=rk+�sk+(k���f1�xk��, where xk∈Q�yk�rk�. Then it follows
from (8.10) that

q�yk+1�rk+1��q�yk�rk+(k��f1�xk��


Assume that q�yk+1�rk+1� is not a solution of dual problem. Then (see Lemma
6.1(1)),

q��yk�rk+(k��f1�xk��=qe��yk�rk+(k��f1�xk��


Let x̃∈Q�yk�rk+(k��f1�xk��. It follows from Lemma 6.1(2) that x̃�X0 so
f1�x̃�>0
 Since �yk�rk� is not a solution of the dual problem, we have f1�xk�>0.
The same argument as in the proof of Theorem 8.2 shows that q�yk+1�rk+1�>
q�yk�rk�. If �yk+1�rk+1� is a solution of dual problem, we also have q�yk+1�rk+1�>
q�yk�rk�.

REMARK 8.6. Some numerical methods for unconstrained global Lipschitz op-
timization have recently been developed, (for example, the cutting angle method,
see [7], Ch. 9 and references therein). These methods can be used for solving the
subproblem at the Main Step 1. The proposed supergradient algorithm allow us to
use these methods for solving constraint problems.
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